ХИМИЗМ РАЗЛОЖЕНИЯ АКТИВНОГО ХЛОРА В РАСТВОРАХ

Гипохлорит натрия образует в воде хлорноватистую кислоту и гипохлоритный ион в соотношениях, определяемых рН воды. Соотношение между гипохлорит-ионом и хлорноватистой кислотой определяется протеканием реакций гидролиза гипохлорита натрия (1) и диссоциации хлорноватистой кислоты (2):

 $CIO^- + H_2O \rightarrow HCIO + OH^- (1) \qquad HCIO \rightarrow H^+ + CIO^- (2)$

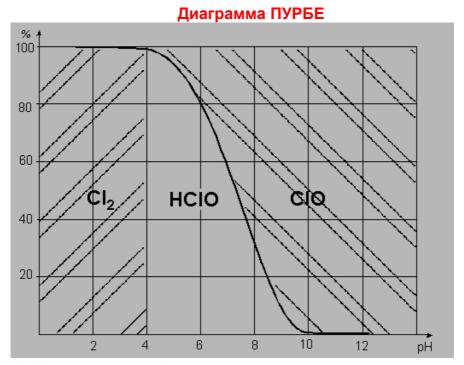


Рис.1. Изменение доли форм активного хлора в зависимости от рН

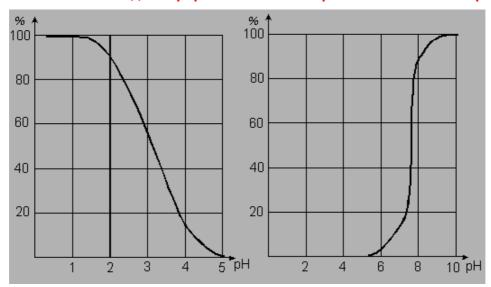


Рис.2. Доля молекулярного хлора в зависимости от pH

Рис.3. Доля гипохлорит-иона в зависимости от pH

В области рН >10 единственной формой активного хлора является гипохлоритион. При значениях рН 4 ÷10 в области в растворе появляется недиссоциированная хлорноватистая кислота, ее доля меняется от 100% при значениях рН в области 4÷5 до 0 при значениях рН в области 10 (рис.1). При значениях рН меньше 2 основной формой активного хлора является молекулярный хлор.

В сильнощелочных растворах **NaCIO** разлагается по кислородному механизму:

$$CIO^{-} \rightarrow O + CI^{-}$$
 (3)

Образующийся атомарный кислород в силу своей высокой реакционной способности переходит в молекулярную форму и частично в озон:

$$2O \rightarrow O_2$$
 (4a)
 $2O_2 + O \rightarrow O_3$ (46)

Помимо реакции кислородного разложения NaClO при температурах ≥ 35°C может проходить побочная реакция хлоратного разложения:

$$3 \text{ CIO}^{-} \rightarrow \text{CIO}_{3}^{-} + 2 \text{CI}^{-}$$
 (5)

В области значений рН, при которых в растворе присутствует хлорноватистая кислота, саморазложение растворов активного хлора протекает по реакциям:

HCIO + 2 CIO
$$^- \rightarrow$$
 CIO $_3^-$ + 2 CI $^-$ + H $^+$ (6)
HCIO + CIO $^- \rightarrow$ O $_2$ + 2 CI $^-$ + H $^+$ (7)

При дальнейшем уменьшении рН в отсутствии ионов *СЮ* разложение пойдет по реакциям:

3 HCIO
$$\rightarrow$$
 CIO₃⁻ + 2 CI⁻ + 3 H⁺ (8a)
2 HCIO \rightarrow O₂ + 2 CI⁻ + 2 H⁺ (86)

При pH< 3 саморазложение растворов NaClO идет с выделением молекулярного Cl₂

$$HCI + HCIO \rightarrow CI_2 + H_2O$$
 (9)

РЕЗЮМЕ:

При значениях **pH** ≥**10** имеет место <u>кислородное разложение</u>

При значениях **pH 5,0÷10,0** – кислородное и хлоратное разложение

При значениях **рН 3,0÷5,0** – <u>хлорное и хлоратное разложение</u>.

При значениях pH < 3,0 -<u>хлорное разложение</u>

Наиболее устойчивыми являются растворы NaClO при pH >11. При избытке щелочи 20÷30 г/л растворы с высокой концентрацией активного хлора могут храниться при 15÷20°С в течение 14 суток. Больший избыток щелочи существенного влияния на стабильность не оказывает.

Таблица 1
Потери активного хлора из растворов NaClO с массовой долей а.х. 15÷20% в зависимости от температуры

Температура, °С	15	20	25	30	35
Потери активного хлора, г/л⋅сут	0,35	1,1	2,0	3,2	5,6

Таблица 2
Потери активного хлора (50 % от начальной концентрации) при 20⁰С
в зависимости от начальной концентрации

NaClO, г/л	Срок хранения
250	5 месяцев
100	7 месяцев
50	2 года
20	5- 6 лет

Таблица 3. Период полураспада растворов гипохлорита натрия (данные Dow Chemical)

Процент актив-	Γ	Териод полу ј	распада, дне	Й
ного хлора	100°C	60°C	25°C	15°C
10.0	0.079	3.5	220	800
5.0	0.25	13.0	790	5000
2.5	0.63	28	1800	
0.5	2.5	100	6000	

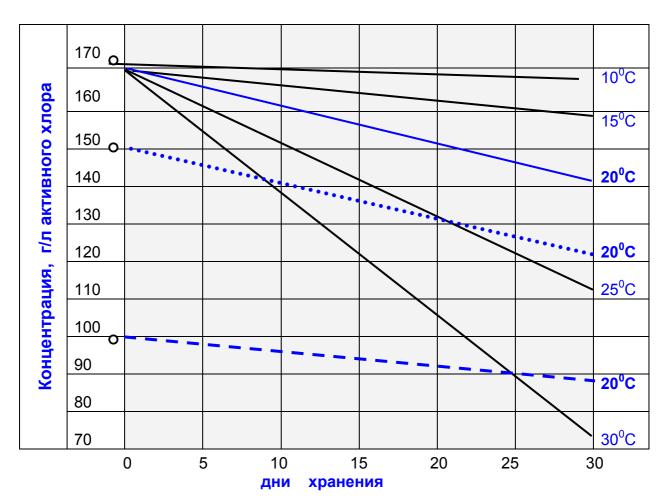


Рис.4. Потеря активности гипохлорита натрия в зависимости от начальной концентрации, времени и температуры хранения (данные Dow Chemical)

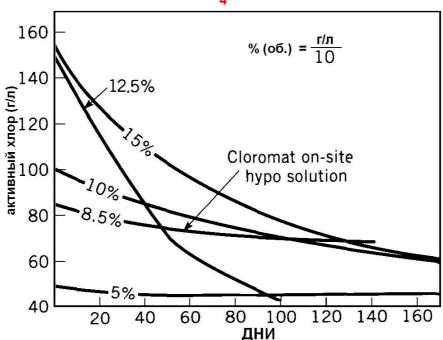


Рис 5. Скорость распада растворов гипохлорита натрия

При действии света скорость распада гипохлорита натрия увеличивается примерно в 2 раза. По американским данным период полураспада раствора **NaClO** (10-15% масс. а.х.) сократится приблизительно в **3-4 раза** под воздействием солнечного света. Для более крепких растворов (до 20% а.х.), сокращение периода полураспада происходит ~ в 6 раз.

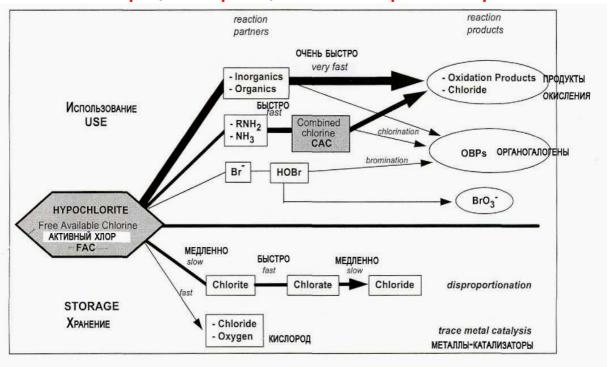
Стабильность **NaCIO** возрастает в присутствии силикатов. Соединения некоторых элементов (*Co, Ni, Cu, Fe*) способны окисляться при взаимодействии с гипохлоритом, образуя нестойкие гидроокиси высшей валентности. Каталитическое разложение гипохлорита протекает стадийно, что показано на примере кобальта:

$$CIO^{-} + Co(OH)_{2} \rightarrow CI^{-} + Co(OH)_{4}$$
 (10) $Co(OH)_{4} \rightarrow Co(OH)_{2} + O_{2} + H_{2}O$ (11)

Потенциальная опасностью **NaCIO** - полная несовместимость с кислотами, т.к. при pH < 5,0 равновесие реакции гидролиза **NaCIO** смещается в сторону выделения молекулярного CI_2 .

Таблица 4 Растворимость хлора при различных давлениях (г/л)

Парциальное		Температура, °С	
давление хлора, мм рт. ст.	10	20	30
	Растворимость	хлора в воде, (г/з	1)
3	0,454	0,438	0,424
10	0,603	0,575	0,553
50	1,354	1,210	1,106
100	2,08	1,773	1,573
250	3,05	3,19	2,69
500	6,85	5,29	4,30
1000	выпадает гид- рат хлора	9,27	7,27
Раствори	имость хлора (г/л) в (концентрацией		а натрия
76			0,213
420			1,03
760			1,95

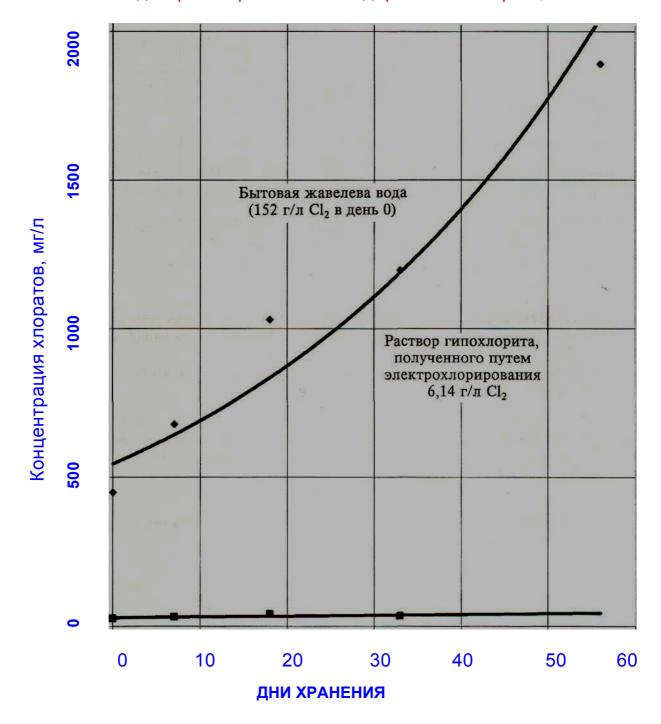

Растворимость гипохлорита натрия в воде

Температура, ⁰ С	NaCIO , масс.%	Твердая фаза
- 2,6	5,0	Лед
-6,5	9,8	Лед
-12,0	14,6	Лед
-13,6	17,5	Лед
- 16,6	19,2	Лед + NaClO⋅5H ₂ O
-11,7	20,0	NaClO⋅5H ₂ O
15,0	30,6	-//-
25,0	40,0	-//-
23,7	45,8	NaClO⋅5H ₂ O

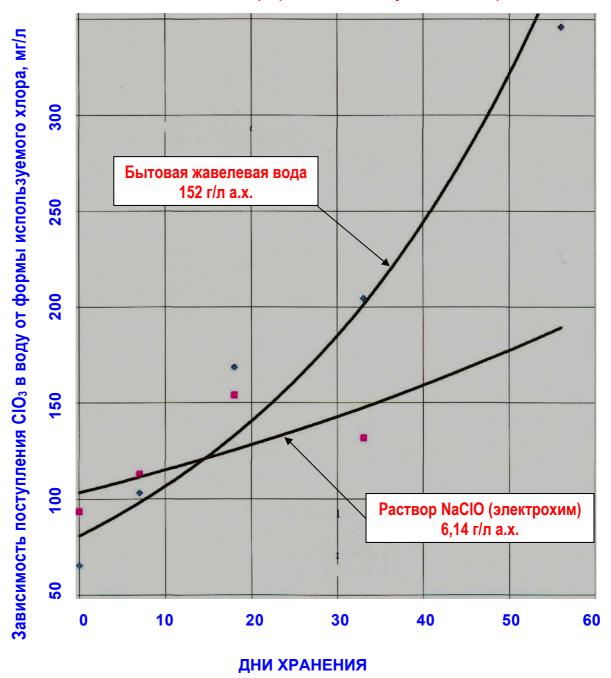
Рекомендуемые требования к гипохлориту натрия с целью минимизации образования хлоратов (Великобритания)

- Разбавление товарного раствора сразу же после поставки до $9 \div 10\%$ вес $(90 \div 100~\text{г/л})$.
- Хранение при относительно низких температурах (15÷18°C)
- Температура хранения на заводе-изготовителе ниже 20°С
- Поставка в течение 1 недели после изготовления
- Значение рН более 12
- плотность больше, чем 1,14 кг/дм³
- содержание Ni^{2+} и Cu^{2+} меньше чем 0,1 мг/л
- концентрация CIO₃ меньше чем 1,5 г/л
- Раствор должен периодически контролироваться на содержание $\text{CIO}^{\text{-}},\ \text{CIO}_3$

Схема процессов реакции с гипохлоритом натрия



Результаты анализа воды на содержание хлоратов, мг/л (Нью Джерси, США)


Источник	Место		ерси, США)	Вода после о	бработки (ги-		
исходной	отбора	Исходн	Исходная вода		похлорит натрия)		
воды		зима	лето	зима	лето		
	1	Нет	Нет	0,070	0,350		
GWU12	2	Нет	Нет	0,102	0,362		
	3	Следы					
GWU11	1	Нет	Нет	0,033	0,066		
GWUTT	2	0,014	Нет				
SW2	1	Следы	Нет	0,033	0,101		
3442	2	Следы	Нет	0,033	0,101		
GW3		0,011	Нет	0,067	0,094		
CS2	1		Нет	0,349	0,258		
	2	Нет	Нет	0,033	0,085		
	2 3 4	Нет	Нет	0,036	0,06		
	4	0,016	0,036				
CS1		0,055	0,078	0,065	0,080		
GW2	2		Нет	0,024	0,122		
	3		0,07		0,045		
	4		0,015		0,06		
	1	0,046	0,144	0,044	0,09		
SW1	3	0,024	нет	0,081	0,163		
	4	0,090	0,043	0,039	0,110		
	5			0,092	0,160		
	1		Нет		0,062		
GW1	2		Нет		0,195		
	2 3 4		0,043		0,039		
			нет		0,257		
	5		нет		0,059		

ИЗМЕНЕНИЕ СОДЕРЖАНИЯ ХЛОРАТОВ

в растворе бытовой жавелевой воды и в полученном электрохимическим методом растворе NaClO с содержанием хлора 6,14 г/л

Добавление хлоратов в обрабатываемую воду в зависимости от формы используемого хлора

Нормативно-технические требования на NaClO

Техническое наименование – гипохлорит натрия Химическое наименование – хлорноватистокислый натрий Эмпирическая формула – **NaCIO**. Структурная формула – **Na-O-CI** Молекулярный вес – 74,44

Гипохлорит натрия марки «А» по **ГОСТ 11085-76** (с изменениями от 1986 и 1991 г.)

Плотность - **1260-1270 кг/м**³. Температура плавления — **минус 6** $^{\circ}$ **С**.

Температура начала замерзания — **от -10^{\circ}С до -12^{\circ}С**.

Температура кристаллизации – в области **минус -20÷30⁰С** (немецкие нормативы).

Таблица 6 Температура замерзания растворов NaClO (данные НАК «Азот»)

Массовая концент	Температура		
«активный хлор»	NaCl	NaOH	замерзания, ⁰ С
191,4	175,4	6,8	-12,4
185,3	166,3	6,5	-18,6
175,6	158,8	10,3	-16
174,5	158,2	15,4	-18
170,8	156,2	45	-26
150,6	136,8	6,1	-17,9

Основные показатели по ГОСТ и ТУ

Таблица 7

Показатели (по ГОСТ11086-86)	Норма для марок		
показатели (потосттоее-ое)	A	Б	
Внешний вид	Жидкость зеленовато- жотого цвета 20 20		
Коэффициент светопропускания %, н.м.	20 20		
Содержание активного хлора г/л, н.м.	190	170	
Содержание щелочи, в пересчете на NaOH, г/л	10÷20	40÷60	
Содержание железа г/л, не более	0,02 0,06		

Таблица 8

Показатели (по ТУ 6-01-29-93)	Норма для марок				
,	Α	Б	В	Γ	Э
Массовая концентрация а.х г/л, не менее	120	120	120	120	7
Массовая концентрация щелочи, в пере- счете на NaOH, г/л	40	90	10÷20	20÷40	1

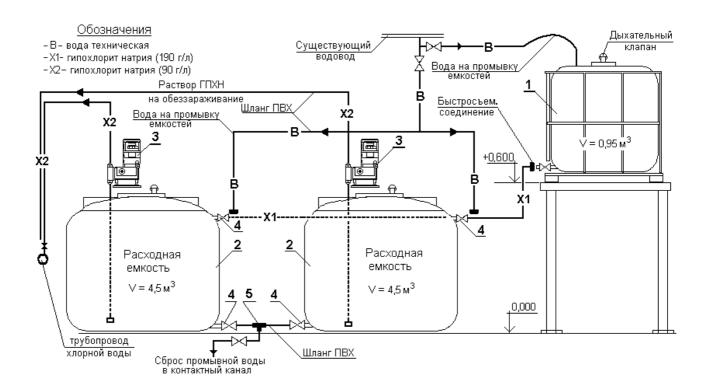
Марка А - для обеззараживания природных и сточных вод.

Марка **Б** - для дезинфекции территорий (производится из абгазного Cl_2 органического и неорганического производства и диафрагменный или ртутный едкий натр).

Марки В и Г предназначены для дезинфекции воды рыбохозяйственных водоемов.

Марка **Э** - для проведения общей дезинфекции, обеззараживания питьевой воды, стоков и т.д. Получают электролизом раствора NaCl в бездиафрагменных электролизерах.

Сравнение нормативных требований по свойствам гипохлорита натрия


<u>Гипохлорит натрия</u> в настоящее время классифицируется как «яд», то есть категория 4 в «Инструкции опасных товаров». Однако, согласно классификации ООН NaClO классифицирован как коррозионный - класс 8, № ООН -1791, группа опасности для хранения - PGII или PG III в зависимости от концентрации.

При концентрации больше чем 5% (вес), но менее 16% по активному хлору NaClO относят к группе **PG III**. При концентрации 16% и выше - к группе **PG II PG I, II** и **III** - высокая, средняя и низкая опасность соответственно.

По существующим «Инструкциям опасных товаров», хранение NaClO в количестве более **250 литров** требует оформления лицензии (лицензирование для разъедающих веществ и ядов).

	ГОСТ 11086-76, марка "A"	ТУ 6-01-93 марка"А"	DIN EN 901	типовые ком- мерческие про- дукты в Гер- мании
Внешний вид	Зеленовато- желтоватая жидкость	Зеленовато- желтоватая жид- кость	Желто-зеленая, про- зрачная жидкость	Желтовато-зеленая жидкость
Плотность, кг/дм ³	-	-	1,13-1,28 при 200С	
Давление паров, кПа	-	-	2,5 (при 20°С)	
Температура замерзания и кристаллизации, °C	-	-	Начало замерзания минус 17°C	
Вязкость, динамическая, mP sec		-	2,6	
Значение рН	-	-	11 (при 20 ⁰ C)	
Коэффициент светопроницаемости	> 20 %		-	
Весовая концентрация	> 190 г/дм ^{3 *}}	> 120 г/дм ³ *>	до 160 г/дм ³	150-180 г/дм ³
Концентрация щелочи в пересчете на NaOH	< 10-20 г/дм ³	< 40 г/дм ³		5,0-7,5 г/ м ³
Весовая концентрация железа Fe	< 0,02 г/дм ³			< 1 мг/кг
Хлорат натрия NaCO₃ (% вес)			< 5,4% (< 9,7 г/кг а.х.)	0,7-0,9 г/дм ³
Мышьяк Аѕ			< 1 мг/кг а.х.	<1 мг/кг а.х.
Кадмий Cd			< 2,5 мг/кг а.х.	<0,3 мг/кг а.х.
Хром Сг			< 2,5 мг/кг а.х.	<0,3 мг/кг а.х.
Ртуть Hg			< 3,5 мг/кг а.х.	<0,1 мг/кг а.х.
Никель Ni			< 2,5 мг/кг а.х.	<0,3 мг/кг а.х.
Свинец РЬ			< 15 мг/кг а.х.	<2 мг/кг а.х.
Сурьма Sb			< 20 мг/кг а.х.	<2,7 мг/кг а.х.
Селен Se			< 20 мг/кг а.х.	<2,7 мг/кг а.х.

Примечание: В соответствии с **DIN EN 901** допускается потеря активного хлора по истечении 10 суток со дня отгрузки не более 30% от первоначального содержания

Принципиальная схема установки дозирования NaClO

1. Транспортный контейнер 2. Расходная емкость с ГПХН 3. Дозирующий насос 4. Кран шаровой